ПЛАН УЧЕБНОГО ЗАНЯТИЯ

по лисциплине «Математика»

лата 12.11.2024

Тема: «Производная»

Новый материал (конспект в тетрадь)

Понятие производной

Определение. Производной функции f в точке x_0 называется число, к которому стремится разностное отношение

$$\frac{\Delta f}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

при Δx , стремящемся к нулю.

Производная функции f в точке x_0 обозначается $f'(x_0)$ (читается: «Эф штрих от x_0 »).

Определение: операция нахождения производной называется дифференцированием.

Правила вычисления производных

Правило 1. Если функции u и v дифференцируемы в точке x_0 , то их сумма дифференцируема в этой точке и

$$(u+v)'=u'+v'.$$

Коротко говорят: производная суммы равна сумме производных.

Правило 2. Если функции u и v дифференцируемы в точке x_0 , то их произведение дифференцируемо в этой точке и

$$(uv)'=u'v+uv'.$$

Следствие. Если функция u дифференцируема в x_0 , а C — постоянная, то функция Cu дифференцируема в этой точке и

$$(Cu)' = Cu'.$$

Коротко говорят: постоянный множитель можно выносить за знак производной.

Правило 3. Если функции u и v дифференцируемы в точке x_0 и функция v не равна нулю в этой точке, то частное u также дифференцируемо в x_0 и

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}.$$

Таблица производных (таблицу переписать в тетрадь или на плотный картон)

Производные основных функций		I	Производные сложных функций	
1	(c)'=0			
2	(x)'=1			
3	$\left(x^{n}\right)' = n \cdot x^{n-1}$	16	$\left(u^{n}\right)'=n\cdot u^{n-1}\cdot u'$	
4	$(a^x)' = a^x \cdot \ln a$ $(e^x)' = e^x$	17	$\left(a^{u}\right)' = a^{u} \cdot \ln a \cdot u'$	
5	$\left(e^{x}\right)'=e^{x}$	18	$\left(e^{u}\right)'=e^{u}\cdot u'$	
6	$(\log_a x)' = \frac{1}{x \cdot \ln a}$	19	$\left(\log_a u\right)' = \frac{1}{u \cdot \ln a} \cdot u'$	
7	$\left(\ln x\right)' = \frac{1}{x}$	20	$\left(\ln u\right)' = \frac{1}{u} \cdot u'$	
8	$(\cos x)' = -\sin x$	21	$(\cos u)' = -\sin u \cdot u'$	
9	$(\sin x)' = \cos x$	22	$\left(\sin u\right)' = \cos u \cdot u'$	
10	$\left \left(tgx \right)' = \frac{1}{\cos^2 x} \right $	23	$\left(tgu\right)' = \frac{1}{\cos^2 u} \cdot u'$	
11	$\left(\operatorname{ctgx}\right)' = -\frac{1}{\sin^2 x}$	24	$\left(\operatorname{ctgx}\right)' = -\frac{1}{\sin^2 u} \cdot u'$	
12	$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$	25	$(\arcsin u)' = \frac{u'}{\sqrt{1 - u^2}}$	
13	$(\arccos x)' = \frac{-1}{\sqrt{1 - x^2}}$	26	$(\arccos u)' = \frac{-u'}{\sqrt{1 - u^2}}$	
14	$(arctg \ x)' = \frac{1}{1+x^2}$	27	$(arctg u)' = \frac{u'}{1 + u^2}$	
15	$(arcctg \ x)' = \frac{-1}{1+x^2}$	28	$(arcctg u)' = \frac{-u'}{1+u^2}$	

Домашнее задание

Проработать конспект по тетради

Правила вычисления производных (выучить!!!)

$$(u+v)' = u'+v'$$

$$(uv)' = u'v+uv'$$

$$(cu)' = cu'$$

$$\left(\frac{u}{v}\right) = \frac{u'v-uv'}{v^2}$$

Конспект отправляем на электронную почту oles.udalova@yandex.ru